Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 16(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38275942

ABSTRACT

Sindbis virus (SINV) is a widely dispersed mosquito-borne alphavirus. Reports of Sindbis disease are largely restricted to northern Europe and South Africa. SINV is frequently sampled in Australian mosquito-based arbovirus surveillance programs, but human disease has rarely been reported. Molecular epidemiological studies have characterized six SINV genotypes (G1-G6) based on E2 gene phylogenies, mostly comprising viruses derived from the African-European zoogeographical region and with limited representation of Australasian SINV. In this study, we conducted whole genome sequencing of 66 SINV isolates sampled between 1960 and 2014 from countries of the Australasian region: Australia, Malaysia, and Papua New Guinea. G2 viruses were the most frequently and widely sampled, with three distinct sub-lineages defined. No new G6 SINV were identified, confirming geographic restriction of these viruses to south-western Australia. Comparison with global SINV characterized large-scale nucleotide and amino acid sequence divergence between African-European G1 viruses and viruses that circulate in Australasia (G2 and G3) of up to 26.83% and 14.55%, respectively, divergence that is sufficient for G2/G3 species demarcation. We propose G2 and G3 are collectively a single distinct alphavirus species that we name Argyle virus, supported by the inapparent or mild disease phenotype and the higher evolutionary rate compared with G1. Similarly, we propose G6, with 24.7% and 12.61% nucleotide and amino acid sequence divergence, is a distinct alphavirus species that we name Thomson's Lake virus.


Subject(s)
Culicidae , Sindbis Virus , Animals , Humans , Sindbis Virus/genetics , Australia , Genomics , Nucleotides
2.
Viruses ; 14(10)2022 09 28.
Article in English | MEDLINE | ID: mdl-36298690

ABSTRACT

Non-pharmaceutical interventions (NPIs) to reduce SARS-CoV-2 transmission disrupted respiratory virus seasonality. We examined the unusual return of human metapneumovirus (hMPV) in Western Australia following a period of absence in 2020. We analysed hMPV laboratory testing data from 1 January 2017 to 31 December 2021. Whole-genome sequencing of selected hMPV-positive samples was performed using a tiled-amplicon approach. Following an absence in spring 2020, an unusual hMPV surge was observed during the wet summer season in the tropical Northern region in late 2020. Following a six-month delay, an intense winter season occurred in the subtropical/temperate Southern and Metropolitan regions. Compared to 2017-2019, hMPV incidence in 2021 increased by 3-fold, with a greater than 4-fold increase in children aged 1-4 years. There was a collapse in hMPV diversity in 2020, with the emergence of a single subtype. NPIs contributed to an absent 2020 season and a clonal hMPV resurgence. The summer surge and delayed winter season suggest that prevailing temperature and humidity are keys determinant of hMPV transmission. The increased incidence in 2021 was linked to an expanded cohort of hMPV-naïve 1-4-year-old children and waning population immunity. Further intense and unusual respiratory virus seasons are expected as COVID-19 associated NPIs are removed.


Subject(s)
COVID-19 , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Humans , Infant , Child, Preschool , Metapneumovirus/genetics , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/prevention & control , SARS-CoV-2/genetics , Western Australia/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Seasons
3.
Viruses ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-35215813

ABSTRACT

The transmission of dengue and other medically important mosquito-borne viruses in the westernmost region of Indonesia is not well described. We assessed dengue and Zika virus seroprevalence in Aceh province, the westernmost area of the Indonesian archipelago. Serum samples collected from 199 randomly sampled healthy residents of Aceh Jaya in 2017 were analyzed for neutralizing antibodies by plaque reduction neutralization test (PRNT). Almost all study participants (198/199; 99.5%) presented with multitypic profiles of neutralizing antibodies to two or more DENV serotypes, indicating transmission of multiple DENV in the region prior to 2017. All residents were exposed to one or more DENV serotypes by the age of 30 years. The highest geometric mean titers were measured for DENV-4, followed by DENV-1, DENV-2 and DENV-3. Among a subset of 116 sera, 27 neutralized ZIKV with a high stringency (20 with PRNT90 > 10 and 7 with PRNT90 > 40). This study showed that DENV is hyperendemic in the westernmost region of the Indonesian archipelago and suggested that ZIKV may have circulated prior to 2017.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/blood , Zika Virus Infection/blood , Zika Virus/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Dengue/epidemiology , Dengue/virology , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Humans , Indonesia/epidemiology , Male , Middle Aged , Neutralization Tests , Seroepidemiologic Studies , Young Adult , Zika Virus/classification , Zika Virus/genetics , Zika Virus/isolation & purification , Zika Virus Infection/epidemiology , Zika Virus Infection/virology
4.
Viruses ; 14(1)2022 01 06.
Article in English | MEDLINE | ID: mdl-35062303

ABSTRACT

Dengue is a mosquito-borne disease of public health concern affecting tropical and subtropical countries, including Indonesia. Although studies on dengue epidemiology have been undertaken in Indonesia, data are lacking in many areas of the country. The aim of this study was to determine dengue virus (DENV) and chikungunya virus (CHIKV) molecular epidemiology in western regions of the Indonesian archipelago. A one-year prospective study was conducted in Aceh and Jambi in 2015 and 2016, respectively, where patients with dengue-like illness were enrolled. Of 205 patients recruited, 29 and 27 were confirmed with dengue in Aceh and Jambi, respectively, and three from Jambi were confirmed with chikungunya. DENV-1 was the predominant serotype identified in Aceh while DENV-2 was predominant in Jambi. All DENV-1 and DENV-2 from both regions were classified as Genotype I and Cosmopolitan genotype, respectively, and all DENV-3 viruses from Jambi were Genotype I. Some viruses, in particular DENV-1, displayed a distinct lineage distribution, where two DENV-1 lineages from Aceh were more closely related to viruses from China instead of Jambi highlighting the role of travel and flight patterns on DENV transmission in the region. DENV-2 from both Aceh and Jambi and DENV-3 from Jambi were all closely related to Indonesian local strains. All three CHIKV belonged to Asian genotype and clustered closely with Indonesian CHIKV strains including those previously circulating in Jambi in 2015, confirming continuous and sustainable transmission of CHIKV in the region. The study results emphasize the importance of continuous epidemiological surveillance of arboviruses in Indonesia and simultaneous testing for CHIKV among dengue-suspected patients.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/genetics , Dengue Virus/genetics , Dengue/epidemiology , Adolescent , Adult , Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Cross-Sectional Studies , Dengue/virology , Dengue Virus/isolation & purification , Female , Genotype , Humans , Indonesia/epidemiology , Infant , Male , Middle Aged , Molecular Epidemiology , Phylogeny , Serogroup , Young Adult
5.
Viruses ; 12(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32640629

ABSTRACT

Barmah Forest virus (BFV) is a medically important mosquito-borne alphavirus endemic to Australia. Symptomatic disease can be a major cause of morbidity, associated with fever, rash, and debilitating arthralgia. BFV disease is similar to that caused by Ross River virus (RRV), the other major Australian alphavirus. Currently, just four BFV whole-genome sequences are available with no genome-scale phylogeny in existence to robustly characterise genetic diversity. Thirty novel genome sequences were derived for this study, for a final 34-taxon dataset sampled over a 44 year period. Three distinct BFV genotypes were characterised (G1-3) that have circulated in Australia and Papua New Guinea (PNG). Evidence of spatio-temporal co-circulation of G2 and G3 within regions of Australia was noted, including in the South West region of Western Australia (WA) during the first reported disease outbreaks in the state's history. Compared with RRV, the BFV population appeared more stable with less frequent emergence of novel lineages. Preliminary in vitro assessment of RRV and BFV replication kinetics found that RRV replicates at a significantly faster rate and to a higher, more persistent titre compared with BFV, perhaps indicating mosquitoes may be infectious with RRV for longer than with BFV. This investigation resolved a greater diversity of BFV, and a greater understanding of the evolutionary dynamics and history was attained.


Subject(s)
Alphavirus/genetics , Genome, Viral , Phylogeny , Whole Genome Sequencing , Alphavirus/classification , Alphavirus/physiology , Alphavirus Infections/virology , Animals , Australia , Chlorocebus aethiops , Culicidae/virology , Genetic Variation , Papua New Guinea , Sequence Analysis, DNA , Time Factors , Vero Cells , Virus Replication
6.
PLoS Negl Trop Dis ; 12(3): e0006254, 2018 03.
Article in English | MEDLINE | ID: mdl-29494580

ABSTRACT

BACKGROUND: Dengue is endemic in the Western Pacific and Oceania and the region reports more than 200,000 cases annually. Outbreaks of dengue and severe dengue occur regularly and movement of virus throughout the region has been reported. Disease surveillance systems, however, in many areas are not fully established and dengue incidence is underreported. Dengue epidemiology is likely least understood in Papua New Guinea (PNG), where the prototype DENV-2 strain New Guinea C was first isolated by Sabin in 1944 but where routine surveillance is not undertaken and little incidence and prevalence data is available. METHODOLOGY/PRINCIPAL FINDINGS: Serum samples from individuals with recent acute febrile illness or with non-febrile conditions collected between 2007-2010 were tested for anti-DENV neutralizing antibody. Responses were predominantly multitypic and seroprevalence increased with age, a pattern indicative of endemic dengue. DENV-1, DENV-2 and DENV-3 genomes were detected by RT-PCR within a nine-month period and in several instances, two serotypes were identified in individuals sampled within a period of 10 days. Phylogenetic analysis of whole genome sequences identified a DENV-3 Genotype 1 lineage which had evolved on the northern coast of PNG which was likely exported to the western Pacific five years later, in addition to a DENV-2 Cosmopolitan Genotype lineage which had previously circulated in the region. CONCLUSIONS/SIGNIFICANCE: We show that dengue is hyperendemic in PNG and identify an endemic, locally evolved lineage of DENV-3 that was associated with an outbreak of severe dengue in Pacific countries in subsequent years, although severe disease was not identified in PNG. Additional studies need to be undertaken to understand dengue epidemiology and burden of disease in PNG.


Subject(s)
Dengue Virus/genetics , Dengue/epidemiology , Dengue/transmission , Endemic Diseases , Severe Dengue/epidemiology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Child , Child, Preschool , Cost of Illness , Dengue/blood , Dengue/virology , Dengue Virus/immunology , Disease Outbreaks , Female , Genotype , Humans , Infant , Male , Middle Aged , Papua New Guinea/epidemiology , Phylogeny , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Seroepidemiologic Studies , Serogroup , Severe Dengue/virology , Whole Genome Sequencing , Young Adult
7.
PLoS Negl Trop Dis ; 11(4): e0005488, 2017 04.
Article in English | MEDLINE | ID: mdl-28437465

ABSTRACT

Little is known about the natural history of dengue in Papua New Guinea (PNG). We assessed dengue virus (DENV)-specific neutralizing antibody profiles in serum samples collected from northern and southern coastal areas and the highland region of New Guinea between 1959 and 1963. Neutralizing antibodies were demonstrated in sera from the northern coast of New Guinea: from Sabron in Dutch New Guinea (now known as West Papua) and from four villages in East Sepik in what is now PNG. Previous monotypic infection with DENV-1, DENV-2, and DENV-4 was identified, with a predominance of anti-DENV-2 neutralizing antibody. The majority of positive sera demonstrated evidence of multiple previous DENV infections and neutralizing activity against all four serotypes was detected, with anti-DENV-2 responses being most frequent and of greatest magnitude. No evidence of previous DENV infection was identified in the Asmat villages of the southern coast and a single anti-DENV-positive sample was identified in the Eastern Highlands of PNG. These findings indicate that multiple DENV serotypes circulated along the northern coast of New Guinea at different times in the decades prior to 1963 and support the notion that dengue has been a significant yet neglected tropical infection in PNG for many decades.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Dengue/epidemiology , Dengue/virology , Serogroup , Serologic Tests , Adult , Aged , Antibodies, Neutralizing/blood , Dengue/history , Dengue Virus/classification , Female , History, 20th Century , Humans , Male , Melanesia/epidemiology , Middle Aged , Young Adult
8.
PLoS Negl Trop Dis ; 9(1): e0003442, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25635775

ABSTRACT

Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010-2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011-2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases.


Subject(s)
Dengue Virus/genetics , Dengue/virology , Animals , Chlorocebus aethiops , Dengue/epidemiology , Humans , Indonesia/epidemiology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Vero Cells , Western Australia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...